# Database Design: Normalization

# Agenda

- 1. Database Design
- 2. Normal forms & functional dependencies
- 3. Finding functional dependencies
- 4. Closures, superkeys & keys
- 5. Relation Decomposition

#### **FINDING FUNCTIONAL DEPENDENCIES**

#### What you will learn about in this section

- 1. "Good" vs. "Bad" FDs: Intuition
- 2. Finding FDs
- 3. Closures

#### "Good" vs. "Bad" FDs

We can start to develop a notion of **good** vs. **bad** FDs:

| EmpID | Name  | Phone | Position |
|-------|-------|-------|----------|
| E0045 | Smith | 1234  | Clerk    |
| E3542 | Mike  | 9876  | Salesrep |
| E1111 | Smith | 9876  | Salesrep |
| E9999 | Mary  | 1234  | Lawyer   |

#### Intuitively:

EmpID -> Name, Phone, Position is "good FD" Minimal redundancy, less possibility of anomalies

#### "Good" vs. "Bad" FDs

We can start to develop a notion of **good** vs. **bad** FDs:

| EmpID | Name  | Phone | Position |
|-------|-------|-------|----------|
| E0045 | Smith | 1234  | Clerk    |
| E3542 | Mike  | 9876  | Salesrep |
| E1111 | Smith | 9876  | Salesrep |
| E9999 | Mary  | 1234  | Lawyer   |

Intuitively:

EmpID -> Name, Phone, Position is "good FD"

But Position -> Phone *is a "bad FD" Redundancy! Possibility of data anomalies* 

#### "Good" vs. "Bad" FDs

| Student | Course | Room |
|---------|--------|------|
| Mary    | CS145  | B01  |
| Joe     | CS145  | B01  |
| Sam     | CS145  | B01  |
| ••      | ••     | ••   |

Returning to our original example... can you see how the "bad FD" {Course} -> {Room} could lead to an:

- Update Anomaly
- Insert Anomaly
- Delete Anomaly
- ...

Given a set of FDs (from user) our goal is to:

- 1. Find all FDs, and
- 2. Eliminate the "Bad Ones".

- There can be a very large number of FDs...
   How to find them all efficiently?
- We can't necessarily show that any FD will hold **on all instances...** 
  - How to do this?

We will start with this problem: Given a set of FDs, F, what other FDs **must** hold?

Equivalent to asking: Given a set of FDs,  $F = \{f_1, ..., f_n\}$ , does an FD g hold?

**Inference problem**: How do we decide?

#### Example:

Products

| Name   | Color | Category | Dep    | Price |
|--------|-------|----------|--------|-------|
| Gizmo  | Green | Gadget   | Toys   | 49    |
| Widget | Black | Gadget   | Toys   | 59    |
| Gizmo  | Green | Whatsit  | Garden | 99    |

**Provided FDs:** 

- 1. {Name}  $\rightarrow$  {Color}
- 2. {Category}  $\rightarrow$  {Department} 3. {Color, Category}  $\rightarrow$  {Price}

Given the provided FDs, we can see that {Name, Category}  $\rightarrow$  {Price} must also hold on any instance...

Which / how many other FDs do?!?

Finding Functional Dependencies Equivalent to asking: Given a set of FDs,  $F = {f_1, ..., f_n}$ , does an FD g hold?

Inference problem: How do we decide?

#### Axioms:

Reflexivity: if  $Y \subseteq X$ , then  $X \rightarrow Y$ Augmentation: if  $X \rightarrow Y$ , then  $WX \rightarrow WY$ Transitivity: if  $X \rightarrow Y$  and  $Y \rightarrow Z$ , then  $X \rightarrow Z$ 

#### **Derived Rules:**

Union: if  $X \rightarrow Y$  and  $X \rightarrow Z$ , the  $X \rightarrow YZ$ Decomposition: if  $X \rightarrow YZ$ , then  $X \rightarrow Y$  and  $X \rightarrow Z$ Pseudo transitivity: if  $X \rightarrow Y$  and  $WY \rightarrow Z$ , then  $XW \rightarrow Z$ 

#### **Example:**

Products

| Name   | Color | Category | Dep    | Price |
|--------|-------|----------|--------|-------|
| Gizmo  | Green | Gadget   | Toys   | 49    |
| Widget | Black | Gadget   | Toys   | 59    |
| Gizmo  | Green | Whatsit  | Garden | 99    |

Provided FDs:

- 1. {Name}  $\rightarrow$  {Color}
- 2. {Category}  $\rightarrow$  {Department}
- 3. {Color, Category}  $\rightarrow$  {Price}

Which / how many other FDs hold?

#### Example:

Provided FDs:

- 1. {Name}  $\rightarrow$  {Color}
- 2. {Category}  $\rightarrow$  {Dept.}
- 3. {Color, Category}  $\rightarrow$  {Price}

#### **Inferred FDs:**

| Inferred FD                              | Rule used |
|------------------------------------------|-----------|
| 4. {Name, Category} -> {Name}            | ?         |
| 5. {Name, Category} -> {Color}           | ?         |
| 6. {Name, Category} -> {Category}        | ?         |
| 7. {Name, Category} -> {Color, Category} | ?         |
| 8. {Name, Category} -> {Price}           | ?         |

Which / how many other FDs hold?

Provided FDs:

- 1. {Name}  $\rightarrow$  {Color}
- 2. {Category}  $\rightarrow$  {Dept.}
- 3. {Color, Category}  $\rightarrow$  {Price}

#### Inferred FDs:

**Example:** 

| Inferred FD                              | Rule used             |
|------------------------------------------|-----------------------|
| 4. {Name, Category} -> {Name}            | Trivial               |
| 5. {Name, Category} -> {Color}           | Transitive (4 -> 1)   |
| 6. {Name, Category} -> {Category}        | Trivial               |
| 7. {Name, Category} -> {Color, Category} | Split/combine (5 + 6) |
| 8. {Name, Category} -> {Price}           | Transitive (7 -> 3)   |

Can we find an algorithmic way to do this?

Yes. But we need to learn about closures before that!

## **<u>Closures</u>**

#### Closure of a set of Attributes

Given a set of attributes  $A_1$ , ...,  $A_n$  and a set of FDs F: Then the <u>closure</u>,  $\{A_1, ..., A_n\}^+$  is the set of attributes B s.t.  $\{A_1, ..., A_n\} \rightarrow B$ 

Example:
$$F = \{name\} \rightarrow \{color\} \\ \{category\} \rightarrow \{department\} \\ \{color, category\} \rightarrow \{price\} \}$$
Example  
Closures: $\{name\}^+ = \{name, color\} \\ \{name, category\}^+ = \\ \{name, category, color, dept, price\} \\ \{color\}^+ = \{color\} \}$ 

```
Start with X = \{A_1, ..., A_n\} and set of FDs F.
```

```
Repeat until X doesn't change;
```

do:

```
if \{B_1, ..., B_n\} \rightarrow C is in F and \{B_1, ..., B_n\} \subseteq X then
add C to X.
Return X as X<sup>+</sup>
```

```
Start with X = {A<sub>1</sub>, ..., A<sub>n</sub>}, FDs F.

Repeat until X doesn't change;

do:

if {B<sub>1</sub>, ..., B<sub>n</sub>} \rightarrow C is in F and {B<sub>1</sub>,

..., B<sub>n</sub>} \subseteq X:

then add C to X.

Return X as X<sup>+</sup>

{name} \rightarrow {color}

{category} \rightarrow {dept}

{color, category} \rightarrow

{price}
```

F =

```
{name, category}+ =
{name, category}
```

Start with X = {A<sub>1</sub>, ..., A<sub>n</sub>}, FDs F.
Repeat until X doesn't change;
do:
 if {B<sub>1</sub>, ..., B<sub>n</sub>}  $\rightarrow$  C is in F and {B<sub>1</sub>,
 ..., B<sub>n</sub>}  $\subseteq$  X:
 then add C to X.
Return X as X<sup>+</sup>
F=
{name}  $\rightarrow$  {color}
{category}  $\rightarrow$  {dept}
{color, category}  $\rightarrow$ 

```
{name, category}+ =
{name, category}
```

{name, category}+ =
{name, category, color}

Start with X = {A<sub>1</sub>, ..., A<sub>n</sub>}, FDs F.
Repeat until X doesn't change;
do:
 if {B<sub>1</sub>, ..., B<sub>n</sub>}  $\rightarrow$  C is in F and {B<sub>1</sub>,
 ..., B<sub>n</sub>}  $\subseteq$  X:
 then add C to X.
Return X as X<sup>+</sup>
F=
{name}  $\rightarrow$  {color}
{category}  $\rightarrow$  {dept}
{color, category}  $\rightarrow$ {price}

```
{name, category}+ =
{name, category}
```

{name, category}+ =
{name, category, color}

{name, category}+ =
{name, category, color, dept}

Start with X = {A<sub>1</sub>, ..., A<sub>n</sub>}, FDs F.
Repeat until X doesn't change;
do:
 if {B<sub>1</sub>, ..., B<sub>n</sub>} → C is in F and {B<sub>1</sub>,
 ..., B<sub>n</sub>} ⊆ X:
 then add C to X.
Return X as X<sup>+</sup>
F=
{name} → {color}
{category} → {dept}
{color, category} →

```
{name, category}+ =
{name, category}
```

{name, category}+ =
{name, category, color}

{name, category}+ =
{name, category, color, dept}

```
{name, category}+ =
{name, category, color, dept,
price}
```

#### EXAMPLE

R(A,B,C,D,E,F)

$$\{A,B\} \rightarrow \{C\} \\ \{A,D\} \rightarrow \{E\} \\ \{B\} \rightarrow \{D\} \\ \{A,F\} \rightarrow \{B\}$$

}

}

Compute  $\{A, B\}^+ = \{A, B, B\}^+$ 

Compute {A, F}<sup>+</sup> = {A, F,

#### EXAMPLE

R(A,B,C,D,E,F)

$$\{A,B\} \rightarrow \{C\} \\ \{A,D\} \rightarrow \{E\} \\ \{B\} \rightarrow \{D\} \\ \{A,F\} \rightarrow \{B\}$$

}

}

Compute {A, B}<sup>+</sup> = {A, B, C, D

Compute {A, F}<sup>+</sup> = {A, F, B

#### EXAMPLE

R(A,B,C,D,E,F)

$$\{A,B\} \rightarrow \{C\} \\ \{A,D\} \rightarrow \{E\} \\ \{B\} \rightarrow \{D\} \\ \{A,F\} \rightarrow \{B\}$$

Compute  $\{A, B\}^+ = \{A, B, C, D, E\}$ 

Compute  $\{A, F\}^+ = \{A, B, C, D, E, F\}$ 

#### 3. CLOSURES, SUPERKEYS & KEYS

# What you will learn about in this section

- 1. Closures
- 2. Superkeys & Keys

# Why Do We Need the Closure?

- With closure we can find all FD's easily
- To check if  $X \to A$ 
  - 1. Compute X<sup>+</sup>
  - 2. Check if  $A \subseteq X^+$

Note here that **X** is a *set* of attributes, but **A** is a *single* attribute. Why does considering FDs of this form suffice?

# Using Closure to Infer ALLFDs



We did not include {B,C}, {B,D}, {C,D}, {B,C,D} to save some space.

# Using Closure to Infer ALL FDs

Step 1: Compute X<sup>+</sup>, for every set of attributes X:

Example: $\{A, B\} \rightarrow C$ Given F = $\{A, D\} \rightarrow B$ 

{B}

 $\rightarrow D$ 

 ${A}^{+} = {A}, {B}^{+} = {B,D}, {C}^{+} = {C}, {D}^{+} = {D}, {A,B}^{+} = {A,B,C,D}, {A,C}^{+} = {A,C}, {A,D}^{+} = {A,B,C,D}, {A,B,C}^{+} = {A,B,D}^{+} = {A,C,D}^{+} = {A,B,C,D}, {B,C,D}^{+} = {B,C,D}, {A,B,C,D}^{+} = {A,B,C,D}, {B,C,D}^{+} = {B,C,D}, {A,B,C,D}^{+} = {A,B,C,D}$ 

Step 2: Enumerate all FDs X  $\rightarrow$  Y, s.t. Y  $\subseteq$  X<sup>+</sup> and X  $\cap$  Y =  $\emptyset$ :

 $\{A,B\} \rightarrow \{C,D\}, \ \{A,D\} \rightarrow \{B,C\}, \\ \{A,B,C\} \rightarrow \{D\}, \ \{A,B,D\} \rightarrow \{C\}, \\ \{A,C,D\} \rightarrow \{B\}$ 

# Using Closure to Infer ALLFDs



Step 2: Enumerate all FDs X 
$$\rightarrow$$
 Y, s.t.  $Y \subseteq X^+$  and  $X \cap Y = \emptyset$ :

*"Y is in the closure of X"* 

 $\{A,B\} \rightarrow \{C,D\}, \{A,D\} \rightarrow \{B,C\}, \\ \{A,B,C\} \rightarrow \{D\}, \{A,B,D\} \rightarrow \{C\}, \\ \{A,C,D\} \rightarrow \{B\}$ 

# Using Closure to Infer ALLFDs



Step 2: Enumerate all FDs X  $\rightarrow$  Y, s.t. Y  $\subseteq$  X<sup>+</sup> and X  $\cap$  Y =  $\emptyset$ :

The FD X  $\rightarrow$ Y is non-trivial

 $\{A,B\} \rightarrow \{C,D\}, \ \{A,D\} \rightarrow \{B,C\}, \\ \{A,B,C\} \rightarrow \{D\}, \ \{A,B,D\} \rightarrow \{C\}, \\ \{A,C,D\} \rightarrow \{B\}$ 

# Superkeys and Keys

# Keys and Superkeys

A <u>superkey</u> is a set of attributes  $A_1, ..., A_n$  s.t. for *any other* attribute **B** in R, we have  $\{A_1, ..., A_n\} \rightarrow B$ 

I.e. all attributes are functionally determined by a superkey

A **<u>key</u>** is a *minimal* superkey

Meaning that no subset of a key is also a superkey

# Finding Keys and Superkeys

- For each set of attributes X
  - 1. Compute X<sup>+</sup>
  - 2. If X<sup>+</sup> = set of all attributes then X is a **superkey**
  - 3. If X is minimal, then it is a **key**

Do we need to check all sets of attributes?

#### Example of Finding Keys

Product(name, price, category, color)

{name, category} → price
{category} → color

What is a key?

#### Example of Keys

Product(name, price, category, color)

{name, category} → price
{category} → color

Decomposition of a relation is done when a relation in relational model is not in appropriate normal form.

Relation R is decomposed into two or more relations if decomposition is **lossless join** as well as **dependency preserving**.

If R(A, B, C) satisfies  $A \rightarrow B$ 

We can project it on A, B and A,C *without losing information* **Lossless** decomposition vs. **Lossy** decomposition

If we decompose a relation R(A, B, C) into relations

R1 =  $\pi_{AB}(R)$  and R2 =  $\pi_{AC}(R)$   $\pi_{AB}(R)$  is the projection of R on AB  $\bowtie$  is the natural join operator Decomposition is **lossy** if R  $\subset$  R1  $\bowtie$  R2 Decomposition is **lossless** if R = R1  $\bowtie$  R2





 $R_1 = \text{the projection of } R \text{ on } A_1, \dots, A_n, B_1, \dots, B_m$  $R_2 = \text{the projection of } R \text{ on } A_1, \dots, A_n, C_1, \dots, C_p$ 

#### **Properties of Decomposition**

|      |      |        |       |          |      | We need a                    |
|------|------|--------|-------|----------|------|------------------------------|
|      | N    | lame   | Price | Category |      | decomposition to be          |
|      | G    | izmo   | 19.99 | Gadget   |      | "correct"                    |
|      | On   | eClick | 24.99 | Camera   |      | l.e. it is a <b>Lossless</b> |
|      | G    | izmo   | 19.99 | Camera   |      | decomposition                |
|      | ×    | /      |       |          |      |                              |
| Nan  | ne   | Price  |       | Name     | Cate | gory                         |
| Gizn | no   | 19.99  | -     | Gizmo    | Gao  | lget                         |
| OneC | lick | 24.99  | -     | OneClick | Can  | nera                         |
| Gizn | no   | 19.99  | -     | Gizmo    | Can  | nera                         |

#### **Lossy Decomposition**

|          |          |       |     |       | -     |     |                    |
|----------|----------|-------|-----|-------|-------|-----|--------------------|
|          | Name     | Price | Cat | egory |       | Nee | d to avoid "bad"   |
|          | Gizmo    | 19.99 | Ga  | adget |       | dec | ompositions        |
|          | OneClick | 24.99 | Ca  | mera  |       |     |                    |
|          | Gizmo    | 19.99 | Ca  | mera  | _     | ١   | What's wrong here? |
|          |          |       |     |       | -     |     |                    |
|          |          |       |     | X     |       |     |                    |
| Name     | Category | ]     |     | Price | Categ | ory |                    |
| Gizmo    | Gadget   | 1     |     | 19.99 | Gadg  | jet |                    |
| OneClick | Camera   |       |     | 24.99 | Came  | era |                    |
| Gizmo    | Camera   | 1     |     | 19.99 | Came  | era |                    |
|          |          |       |     |       |       |     |                    |

#### **Lossy Decomposition**

|          | Name     | Price | Catego | ory      |   |          |       |
|----------|----------|-------|--------|----------|---|----------|-------|
|          | Gizmo    | 19.99 | Gadge  | et       |   |          |       |
|          | OneClick | 24.99 | Came   | ra       |   |          |       |
|          | Gizmo    | 19.99 | Came   | ra       |   |          |       |
|          | /        |       |        |          |   |          |       |
|          |          |       |        |          |   |          |       |
| Name     | Category | ]     | Price  | Category |   | Name     | Price |
| Gizmo    | Gadget   |       | 19.99  | Gadget   | _ | Gizmo    | 19.99 |
| OneClick | Camera   |       | 24.99  | Camera   |   | OneClick | 24.99 |
| Gizmo    | Camera   |       | 19.99  | Camera   | _ | Gizmo    | 19.99 |
|          | 1        | 1     | L I    |          |   | OneClick | 19.99 |
|          |          |       |        |          |   | Gizmo    | 24.99 |



#### **Lossless Decompositions**



A decomposition R to (R1, R2) is **<u>lossless</u>** if  $R = R1 \bowtie R2$ 

To check for lossless join decomposition using FD set, following conditions must hold:

1- Union of Attributes of R1 and R2 must be equal to attribute of R. Each attribute of R must be either in R1 or in R2.

 $Att(R1) \cup Att(R2) = Att(R)$ 

2- Intersection of Attributes of R1 and R2 must not be NULL.

Att(R1)  $\cap$  Att(R2)  $\neq \Phi$ 

3- Common attribute must be a key for at least one relation (R1 or R2).

Att(R1)  $\cap$  Att(R2) -> Att(R1) or Att(R1)  $\cap$  Att(R2) -> Att(R2)

#### Example

A relation R (A, B, C, D) with FD set { A -> BC} is decomposed into R1(ABC) and R2(AD)

Is lossless join decomposition?

First condition holds **true** as Att(R1) U Att(R2) = (ABC) U (AD) = (ABCD) = Att(R).

Second condition holds **true** as Att(R1)  $\cap$  Att(R2) = (ABC)  $\cap$  (AD)  $\neq \Phi$ 

Third condition holds **true** as Att(R1)  $\cap$  Att(R2) = A is a key of R1(ABC) because A->BC is given.

#### **Dependency Preserving Decomposition**

If we decompose a relation R into relations R1 and R2, All dependencies of R either must be a part of R1 or R2 or must be derivable from combination of FD's of R1 and R2.

For Example, A relation R (A, B, C, D) with FD set { A -> BC} is decomposed into R1(ABC) and R2(AD) which is dependency preserving because FD A -> BC is a part of R1(ABC).

#### Question

Consider a schema R(A,B,C,D) and functional dependencies A->B and C->D. Then

the decomposition of R into R1(AB) and R2(CD) is

- A. dependency preserving and lossless join
- B. lossless join but not dependency preserving
- C. dependency preserving but not lossless join
- D. not dependency preserving and not lossless join

#### Answer

For **lossless join** decomposition, these three conditions must hold true: Att(R1) U Att(R2) = ABCD = Att(R) Att(R1)  $\cap$  Att(R2) =  $\Phi$ , which violates the condition of lossless join decomposition. Hence the decomposition is not lossless.

#### For dependency preserving decomposition,

A -> B can be ensured in R1(AB) and C -> D can be ensured in R2(CD). Hence it is dependency preserving decomposition.

So, the correct option is C.

# Acknowledgement

Some of these slides are taken from cs145 course offered by Stanford University.